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Abstract
In recent years and across a myriad of industries, there has 
been a realisation that in order to optimise the Remaining 
Useful Life (RUL) of assets and to maintain optimal system 
level performance whilst assets age and at times with growing 
and dynamic loading demands, a transition to predictive 
maintenance from reactive and traditional condition based 
monitoring and maintenance is required to achieve return of 
investment (ROI) and performance targets. A sector driven by
security and a need to defer investment within the asset base 
is the Energy sector. After a brief introduction to maintenance 
process’s in the oil and gas domain, this paper presents a
novel approach to hierarchical predictive maintenance of 
assets in through a distributed architecture, represented as 
domain knowledge-based system, that provides a viable 
solution for systems containing similar multiple assets

1 Introduction
Year-round energy industry fields require the routine and 
permanent presence of a condition and performance 
monitoring (CPM) system [1], designed to maximise 
production uptime and asset availability. CPM systems 
respond to the asset manager’s need to continuously 
demonstrate ‘fitness for service’; and improve understanding 
of asset condition, which obviously support the decision 
making process for de-rating, process optimisation and 
scheduling for remediation and rectification task. 
Furthermore, there is also a requirement to provide enough 
evidence based knowledge to support the extension of the 
design life of components, and justifications tie with brown 
fields. 

In addition, technological improvements have allowed oil and 
gas developments to emerge into deep and ultra-deep waters
[2][3], introducing an operating environment not encountered 
in shallow water. Following this trend, it is essential to 
understand the various uncertainties associated with operation 
in these new environments, and accept full accountability for 
the economic consequences. Subsea well system repairs and 
interventions also become more expensive and are associated 
with longer delays due to availability and mobilization times 
for required intervention vessels, particularly in ultra-deep 
water environments.

The short and long term effectiveness and efficiency of the 
maintenance management and undertaken maintenance 
activities affect directly key performance indicators, KPIs, 
such as

1. Availability. How many assets are ready for
operation?

2. Reliability. Maintenance should be the number one
priority to ensure reliability, as it has been
considered key to successful subsea operation in the
oil and gas sector.

3. Life Cycle Costs. A neglected maintenance service is
more expensive as the failing equipment needs to be
replaced, reducing the life cycle of the equipment
and increasing their cost. The main target is to
optimize the schedule maintenance service and the
cost needs for life cycle of asset considering the
failures per equipment per time of operation.

4. Safety. The safety parameters of assets need to fulfil
the safety standard and these parameters have to be
defined for all assets. It is needed to measure all
safety parameter per asset per maintenance level and
after repair. The asset is available for operation if
this measurement is 0%.

5. Asset Manager Satisfaction. A more effective and
long lasting maintenance will have a direct impact
on the asset manager satisfaction, as the asset
availability is affected by the status monitoring and
maintenance of the equipment.

To better manage these KPIs and support asset managers with 
a systematic work process for successfully managing 
technical risk and uncertainties, this paper presents a 
knowledge representation framework for end-to-end 
intelligent asset maintenance system and process, and 
presents groundwork developing a maintenance knowledge-
based model describing the oil and gas environment and 
similar industrial scenarios. 

2 Maintenance processes in the oil and gas 
industry
Maintenance of complex industrial assets, such as FPSO 
processing facilities, underwater wells, pipelines etc. is a 
complicated and important task. Current and future 
maintenance activities include methods such as scheduled, 
on-condition monitoring, and predictive maintenance. Figure 
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1 illustrates briefly the different types of maintenance and the 
flow of actions for each one [4].

Traditionally, maintenance is performed based on a time, 
usually related to safety critical items like valves and ESD 
system condition. During this maintenance regime, records
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Figure 1 Types of maintenance and their succession of events

from all assets must be kept and stored efficiently. This task is 
time consuming unless a modern well system control and data 
gathering system is available. There is also the fact that an
asset will deteriorate just as quickly if it is unused as it would 
if it was being operated every day. Only the items which 
deteriorate will vary. Condition monitoring is achieved by 
checking the operation of the equipment and only changing 
something if it shows signs of wear beyond pre-set limits. The 
checking is often done using on-board monitoring and storing 
the data gathered in a computer system for downloading at the 
maintenance facility. Unlike condition monitoring systems, 
predictive maintenance is directed to analysis of current 
equipment state with the object to reveal some possible 
emerging problems, thus preventing failures via adjustment of 
parameters, change of parts, tuning, etc. beforehand, and it 
leads to lower expenses for device maintenance, because 
failures can damage devices severely sometimes. 

The predictive maintenance regime requires access to the 
condition of the assets, by not only looking at the data, but 
also at the knowledge that can be extracted from these data. 
Embedded decision making agents that contain reasoning 
algorithms can optimise the long term management of 
heterogeneous assets and provide fast dynamic response to 
events by autonomously coupling resource capabilities with 
alarms in real time. 

The problem, however, is that, at present, CPM applications 
are mono-domain, targeting only system (i.e. flowlines, or 
control systems), and therefore it leaves the platforms in 
isolation and limits the potential of multiple coordinated 
actions between adaptive collaborative systems.

In a standard information flow, the main use of the data 
acquisition systems is to gather information from sensor data. 
In order for embedded tools to support the decision making 
process and interoperate, it is necessary that they have the 
capability of dealing with and understanding the highly 
dynamic and complex environment where these networks are 
going to operate. These decision support tool are therefore 
constrained to the quality and scope of the available 
information.

Shared knowledge representation between embedded tools is 
therefore necessary to provide them with the required 
common situation awareness. Two sources can provide this 
type of information: the domain knowledge extracted from
the expert and the inferred knowledge form the processed 
sensor data. In both cases, it will be necessary for the 
information to be stored, accessed and shared efficiently by 
the deliberative agents in ‘near’ real time. These agents, 
providing different capabilities and working in collaboration, 
might even be distributed among the different platforms or 
sharing some limited resources.

3 Data flow in maintenance processes
Since maintenance-related processes rely on relevant 
information, comprehensive and timely information delivery 
from the embedded data gathering systems to the individuals 
involved in the maintenance can significantly benefit the 
process. This makes automated maintenance system, which 
can integrate maintenance-related information from many 
sources, highly desired in order to give appropriate
maintenance support. All these variety of data contributing to 
the maintenance process are represented in the data flow
illustrated in Figure 2, which represents the typical life cycle 
of maintenance activities [4].
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Figure 2 Flow diagram of maintenance processes
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Looking at the maintenance environment, the knowledge is 
embraced by interactions among systems, system observers, 
observables, engineering objects and instruments, and the 
complex system interactions must be dispatched into 
infrastructural layers based on knowledge system, which must 
be dedicated to human and data communications. The 
collective vocabularies must be associated with the 
communication crossing the layers in the problem solving 
environment. This synthesis of information would impact on 
knowledge technologies employed today for solving 
engineering problems encountered in the maintenance 
domain. 

4 Knowledge-based system for maintenance 
domain
Maintenance as any other engineering process is a human 
effort to change or facilitate a kind of environment in order to 
make that environment more suitable or responsive to 
perceived human needs and wants. Such an effort results 
many kinds of physical outputs; it may define, design, 
develop or maintain a system. Many actors take part in 
engineering. One group are engineers; others are managers; 
still others are ones who create artefacts such as numerical 
models according to specifications. Much knowledge is 
derived from human observations, designs and experiments. 
They all only know what they know when they need to know 
it. From a computing perspective, there must be a knowledge 
management, which encapsulate its meta-systems in whatever 
forms showing how knowledge is grounded from a level of 
engineering to a level of business organization that manages 
the engineering processes.

Knowledge-based system enables logical extensions to be 
made to integrate information. Therefore, the knowledge
concept is given a special attention in this paper, as it is 
considered a driving element of the intelligent maintenance 
system. Starting from the basic definition of knowledge-based 
system, this task abstracts and extends it in the maintenance 
domain for the oil and gas. Possibly this knowledge system 
should be constructed with a number of different layers to
represent different aspects of the system as maintenance 
activities. 

The main objective of this work is to establish the knowledge-
based system of the maintenance domain in a coherent 
infrastructure interacting with humans, systems, data, devices, 
communications, objects to achieve or problems to solve, as 
well as tools that support all this, including computers, web, 
and data networks.

Before establishing the main requirements for the 
maintenance knowledge-based system in a coherent 
infrastructure for all involved interaction, some aspects and 
systematic concepts need to be considered.

There is no one correct way to model a domain—
there are always viable alternatives. The best 
solution almost always depends on the application 
and the possible extensions.

Development of the knowledge-based system is 
necessarily an iterative process.
Concepts in the system should be close to objects 
(physical or logical) and relationships in the domain 
of interest, e.g. asset maintenance domain. These are 
most likely to be nouns (objects) or verbs 
(relationships) in sentences that describe the domain.

In other words, deciding the use of the knowledge-based 
system, and how detailed or general the system is going to be 
will guide many of the modelling decisions. Among several 
viable alternatives, one aspect will be determined to work 
better for the projected task, be more intuitive, more 
extensible, and more maintainable. Furthermore, the 
knowledge-based system is a model of reality of the world 
and the concepts in the system must reflect this reality. After 
the initial version of the knowledge-based system is defined, 
it will be evaluated and debugged it by using it in applications 
or problem-solving methods or by discussing it with experts 
in the field, or both. As a result, the initial model will be 
revised. This process of iterative design will likely continue 
through the entire lifecycle of the knowledge-based system.

4.1 Model for predictive maintenance

As it has been discussed, predictive maintenance for assets in 
the oil and gas environment is a knowledge intensive task, 
usually performed or supervised by human experts. The 
primary objective of a predictive maintenance process is to 
improve equipment reliability by identifying problems before 
they cause failures, further damage and increase the cost of 
the asset. The secondary objective is to provide advance 
warning of developing problems before these equipment fail 
catastrophically during a production run. In other words, its 
goal is predicting when and what maintenance actions are due 
in order to avoid an unexpected breakdown of the system. 
Considering all aspects involved in the realization of the 
predictive maintenance, Figure 3 illustrates all inputs and 
outputs considered in the intelligent maintenance process of a 
system.

The results from the embedded tools, annotated sensor data, 
serve as an input for the prediction and diagnostic task to 
produce optimum fault detection. The output from diagnostic 
and prediction serve as input to the planning task involving 
sub-tasks such fault recovery and on-line learning, if it is 
adequate. The different tasks described in Figure 3 and their 
decomposition into subtasks can be used as the basis for 
constructing the model. If a list of knowledge roles, which 
serve as input/output in these tasks, is formulated, the most 
important ones, which can be taken by different knowledge 
types (domain concepts, relations or rules), are:

Parameter. A measured or calculated quantity whose 
value can detect abnormal behaviour
Source. Something that can be observed or detected.
Symptom. A negative source.
Norm. Expected values of a parameter for normal 
condition
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Discrepancy. A quantified difference to the norm.
Fault. Cause of symptom
Location. Where a symptom or fault is found
Action. An activity to eliminate a fault or to improve 
situation.

Figure 3 Inputs and outputs involved in predictive 
maintenance

These knowledge roles could represent the meta-concepts in 
the knowledge-based system, and they will express the 
relation task-domain (fault detection – well system). As it can 
be observed in Figure 3, several domain knowledge models 
(i.e. ontologies [5][6]) can be constructed for the scenario 
maintenance of the oil and gas environment. One could be the 
model of the wells, other one could encapsulate the 
maintenance activities, fault detection and diagnostic could be
described in a different model, and so on. These models are 
defined as the domain models, which represent knowledge of 
the domain independently of their use. However, the 
application of the predictive maintenance knowledge-based 
model will employ existing domain models using concepts 
and relations from these models to optimize the knowledge 
transfer.

It is on these layers of domain models where data are 
collected, distributed and measured, reports are circulated; 
and groups are participating and communicating with one 
another. Data in a physics based infrastructure cannot be 
explained merely as a consequence of a differing coherence 
of an assertion. They depend on who makes the assertion, 
where the sensors are situated, where the data are channeled, 
how the data are stored and filtered, or what methods are used 
to understand and explain an observed phenomenon. 
Therefore, the knowledge-based system is systematically 

constrained by the physics based infrastructure. The priori 
knowledge for the model design must be closely inherent to 
understandings of physical systems, as well as practical 
experience with the systems. A problem solving process for a 
given application can then be supported by the “content” of 
the priori system information. Another interactive layer is 
human oriented. 

An engine’s maintenance is no longer just a traditional event 
of a repair – call an engineer in with parts and tools to fix it. It 
is a matter of how to detect the first sign from the engine, so 
something is known priority if there is a need for preventing 
the “disasters”. Engineers can properly analyze equipment 
failures and forecast the probability of the same equipment 
failing in the same asset or other units, or undertake the 
processes, such as data collection, data clustering, testing, 
fault or defect diagnosis, planning spare parts, making 
recommendations, reporting major factors affecting a system’ 
s life, all in a technical and timely manner. All layers are 
meaningful and usable only when a system observer 
participants in a particular communication. Whether a 
maintenance engineer can exploit in elliptical or anaphoric 
resolution is depending in part on the role that the engineer 
has most recently played in the communication in the 
physics-based infrastructure.

The domain model is a description of real-world things of 
interest and consists of a set of conceptual classes, their 
associations and attributes modelled with knowledge-based
class descriptions. In the case of assets in the oil and gas 
domain, the domain model consists of faults that can be 
caused other faults. A transient fault can be defined as failure 
event, while a permanent fault is described by a failure event. 
Furthermore, a condition monitoring methods are employed 
to predict failure states, and triggers a predictive action. 
Predictive maintenance action can be classified as a subclass 
of a proactive maintenance type similar to a scheduled 
maintenance action. Proactive maintenance action reduces 
possibility of a fault. In case of a failure state, reactive 
maintenance action, or on-condition, restores the system state 
to normal. Proactive and reactive maintenance actions are 
subclasses of maintenance actions. All these concepts related 
to the asset maintenance domain are illustrated in Figure 4,
and it can represent the initial knowledge model to anchor the 
collaborative approach in the knowledge model design.

The key concept of this model is the MaintenanceType, which 
is triggered from the occurrence of fault, and depending on 
the nature of the fault (ExistingFault or IncipientFault) the 
maintenance type is classified into two different and disjoint 
CorrectiveMaintenance or PredictiveMaintenance.
Associated to each MaintenanceType individual, there is a 
WorkOrder, which lists the variety of MaintenanceActivity 
that are necessary to recover or repair the fault. The main 
relationships associating these concepts are:

Fault RequiresMaintenanceType MaintenanceType
MaintenanceType hasWorkOrder WorkOrder
WorkOrder hasFirstMaintenanceActivity 
MaintenanceActivity
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MaintenanceActivity hasNextMaintenanceActivity 
MaintenanceActivity

As part of the collaborative design process of the knowledge-
based model, feedback can be taken from several participants. 
It can be considered that the sub classification of the 
maintenance actions to proactive and on-condition is 
unnecessary, as these options can be represented as instances 
of the maintenance action class. Furthermore, the 
maintenance schedule could be associated to the respective 
maintenance actions.

The main objective of condition monitoring techniques is to 
predict at least on failure state, but the condition monitoring 
method could not trigger any maintenance action. The 
condition monitoring is associated with some limited number 
of failures, and only the failures can be prevented by the 
maintenance action. Also, each failure state could not be 
associated with a condition monitoring method.

Maintenance
Action Type

Proactive
Action

On-Condition
Action

Scheduled
Action

Predictive
Action

Condition
Monitoring
Techniques

Failure State

Fault Type Fault Event

Predictive Maintenance 
action is triggered by 
Condition Monitoring 
Techniques

Reactive Maintenance 
Action restores failure 

states

The objective of Condition 
Monitoring methods is to 

predict failure states 

Proactive actions try to 
prevent any fault types 
reducing it probability of 
happening

Figure 4 Initial knowledge-based domain model for predictive 
maintenance

Looking at Figure 4, there could be some doubts about the 
differences between the failure state and failure event. A fault 
is a possibility for or an existence of a failure event or state. 
However, an event is really a state change of some system. 
Therefore, an event can be described with the resulting state 
or a state with the causing event. Potential events of interest 
affecting assets in the oil and gas domain in the shape of a 
FMEA is depicted in Table 1

Event Effect 
Duration

Event 
Duration

Occurrence

Fatigue Dynamic, 
Vibration

Continuous Continuous

Excessive 
loading

Static, 
Quasi-
Static, 
Dynamic

Short or 
Continuous

Sudden

Shock 
loading

Vibration Quick Sudden

Force 
monitoring

Static, 
Quasi-
Static, 
Dynamic

Change, 
Drift

Continuous

Shape 
monitoring

Static Long Regular

Third party 
interference

Dynamic, 
Vibration

Quick, 
Change

Sudden

Fluid 
properties

Static, 
Quasi-
Static, 
Dynamic

Change Sudden

Leak Dynamic, 
Vibration

Change Sudden

Table 1 Characteristics of events and effects considered in the 
knowledge-based model

5 System Architecture
This knowledge-based system should be constructed with a
number of different layers to represent different aspects of the 
system, for information integrating for intelligent monitoring, 
which is founded on a multi-tier architecture and a common
terminology based on knowledge-based system. Figure 5
shows the architecture for information integration. From 
bottom to top there is an abstraction and aggregation process 
in place, which abstracts from low-level, proprietary 
information to higher-level information, which is enriched by 
the semantics embedded in the knowledge-based model.

• Real-World Information. The bottom layer accesses
real-world data, which is acquired from sensors or
whose digital representation is stored in databases
(e.g. in some database of the domain stakeholder, in
Geo Information Systems, or also on the Web). The
key challenge for data acquisition and later
integration on this layer is heterogeneity.

• Semantic Transformation. On the second layer
software parsers and adapters are located, which
transform the real-world information into a common
language. The output of the diverse software parsers
and adapters is stored in the distributed repositories.
It is important that the semantics of this generated
data (relations and properties of referenced objects)
is described consistently with the predictive
maintenance domain model.
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• Aggregation & Persistence. On the aggregation and
persistence layer, repositories and databases are
integrated, and with them the distributed information
as well.

• Predictive Maintenance Domain Model. This model
represents an XML-based data model, which uses
description logics for specifying the terminology of
the predictive maintenance domain, as well as oil
and gas domain.

• Distributed Reasoning [7]. The distributed reasoning
layer comprises so-called reasoners, which is
described as a software-based inference engine that
analyses and interprets information by deriving
additional data using description logic.

• Intelligent Services. On the top layer application,
services and so-called maintenance agents are
located, which are software agents, that can
autonomously collaborate with each other in order to
analyse certain fault situations and in order to
support in corresponding decision making tasks (e.g.
predictive maintenance: when to generated a 
maintenance working order for an asset based on
symptom analysis).

Figure 5 Layered architecture for integrating distributed 
monitoring data

4 Conclusions
A novel approach to hierarchical predictive maintenance of 
assets in the oil and gas domain has been outlined. Through a 
distributed architecture, represented as domain knowledge-
based system, it provides a viable solution for systems 
containing similar multiple assets. The domain model
represents models of many aspects of the system (including a 
physical decomposition among others) and maps to Key 

Performance Indicators (KPI’s).  The approach allows fault 
diagnosis from intelligent embedded tools to be performed at 
different levels within the oil and gas distributed system and 
the most appropriate modeling choices to be used for 
particular problems. The abstract nature of the models 
reduces the computational overheads, and therefore the 
models could be implemented at the lowest level in a 
decentralized approach. The combination of quantitative and 
qualitative fault diagnoses will allow a greater range of 
system faults to be tackled. Therefore, a maintenance 
engineer will benefit greatly from an automated maintenance 
system, which can integrate maintenance-related information 
from many sources, such sensor data, design information, 
diagnostic output from on-board diagnostic systems, thus 
providing appropriate maintenance support

Furthermore, one of the benefits of the approach presented 
here is the extended querying that it provides, even across 
heterogeneous data systems. The meta-knowledge within an 
knowledge-based system can assist an intelligent search 
engine with processing your query. Part of this intelligent 
processing is due to the capability of reasoning that makes 
possible the publication of machine understandable meta-
data, opening opportunities for automated information 
processing and analysis. For instance a diagnostic system, 
using a model of the system, could automatically perform a 
root cause analysis, suggesting the location of a fault in 
relation to the happening of symptoms and alarms in the 
system. The system may not even have a specific sensor in 
that location, and the fault may not even be categorised in a 
fault tree. The reasoning interactions within the model are 
provided by the intelligent embedded tools, which enables the 
domain's logic to be specified with respect to the context 
model and executed to the corresponding knowledge, i.e. the 
instances of the model. 
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